

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-17/0016 of 17/02/2017

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:	Desa-Chem PST / Desa-Chem PFV
Product family to which the above construction product belongs:	Bonded anchor with anchor rod made of galvanized steel or stainless steel of sizes M8, M10 and M12, for use in masonry
Manufacturer: Manufacturing plant:	Desarrollos Especiales de Sistemas de Anclaje S.A (Grupodesa) Parque de Nogocios de Viladecans Edificio Australia C/ Antonio Machado 78 – 80, 1 Planta ES-08840 Viladecans (Barcelona) Tel. (+34) 93 630 53 00 Fax (+34) 93 630 20 63 Internet <u>www.desa.es</u> Desarrollos Especiales de Sistemas de Anclaje S.A (Grupodesa) Manufacturing Plant 2
This European Technical Assessment contains:	25 pages including 20 annexes which form an integral part of the document
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of: This version replaces:	Guideline for European Technical Approval (ETAG) No. 029 Injection Anchors for use in masonry, April 2013, used as European Assessment Document (EAD).

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

The Injection system Desa-Chem PST / Desa-Chem PFV is a bonded anchor (injection type) consisting of a mortar cartridge with Desarollos injection mortar PST, a perforated nylon sleeve, and an anchor rod with hexagon nut and washer in the range of M8, M10 and M12.

The steel elements are made of zinc coated steel or stainless steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry.

An illustration of the product and intended use is given in Annex A1 and Annex A3.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation¹ of this European Technical Assessment.

The anchors are intended to be used with embedment depth given in Annex A4, Table A1. For the installed anchor see Figure given in Annex A3. The intended use specifications of the product are detailed in the Annex B1.

2 Specification of the intended use in accordance with the applicable EAD

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Works Requirements 1 and 4 of Regulation (EU) 305/2011 shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

The anchor is to be used only for anchorages subject to static or quasi-static loading in solid masonry (use category b) or hollow or perforated masonry (use category c) according to Annex B9. The mortar strength class of the masonry has to be M 2,5 according to EN 998-2:2010 at minimum.

The anchors may be installed in Category w/d: installation in wet substrate and use in structures subjected to dry, internal conditions.

The anchors may be used in the following temperature range:

a) -40° C to $+40^{\circ}$ C (max. short term temperature $+40^{\circ}$ C and max. long term temperature $+24^{\circ}$ C),

b) -40°C to +80°C (max short term temperature + 80 °C and max long term temperature + 50 °C).

Elements made of galvanized steel or stainless steel may be used in structures subject to dry internal conditions only.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

¹ The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex from C1 to C5.

Safety in case of fire (BWR 2):

The essential characteristics are detailed in the Annex from C4.

Hygiene, health and the environment (BWR3):

Regarding the dangerous substances contained in this European Technical Assessment, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

Safety in use (BWR4):

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

Sustainable use of natural resources (BWR7)

No performance determined

Other Basic Works Requirements are not relevant

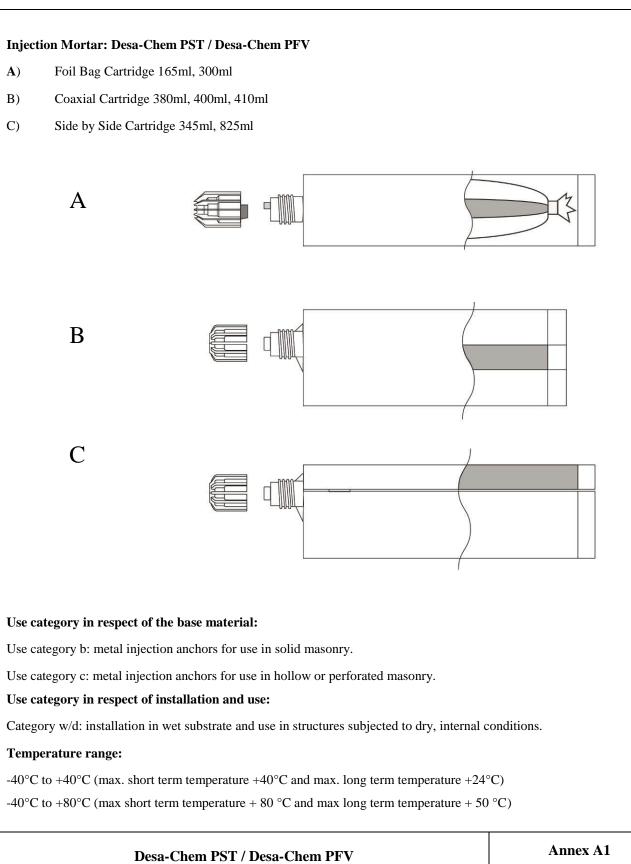
3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with the "Guideline for European technical approval of Metal Injection Anchors for Use in Masonry", ETAG 029, based on the Use Categories b and c in respect of the base material and Category w/d in respect of installation and use.

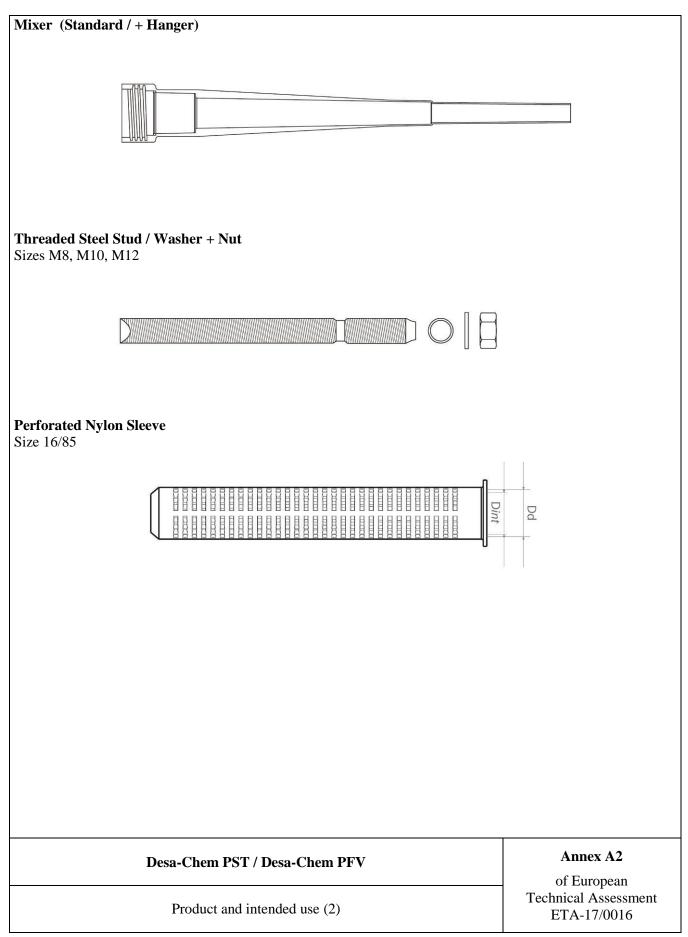
In addition to the specific clauses relating to dangerous substances contained in this European Technical Assessment, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

4 Attestation and verification of constancy of performance (AVCP)

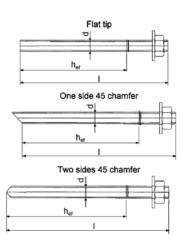
4.1 AVCP system


According to the decision 1997/177/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.

5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking

Issued in Copenhagen on 2017-02-17 by


Thomas Bruun Manager, ETA-Danmark

Product and intended use (1)

Table A1: Threaded rod dimensions

Anchor size			M8	M10	M12
Diameter of anchor rod	d	[mm] =	8	10	12
Size of sleeve	$d_{nom} \ge l_s$	[mm] =		16 x 85	
Nominal anchorage depth	\mathbf{h}_{ef}	[mm] =		85	
Maximum diameter hole in fixture	$d_{\rm fix}$	$[mm] \leq$	9	12	14
Installation torque moment	T _{inst}	[Nm] =	2	2	2
Depth of drilled hole to deepest point	h_1	[mm] =		90	

1) Marking according to clause 4.3 point 3 of ETAG 029 – June 2010.

2) Effective anchorage depths according to the range specified in table 1.

Table A2: Threaded rods materials

Designation	Material		
Threaded rods made of zinc coated steel			
Threaded rod M8 – M12	Strength class 4.6, 5.8, 6.8 EN ISO 898-1 Steel galvanized \geq 5µm EN ISO 4042 Hot dipped galvanized \geq 45µm EN ISO 10684		
Washer ISO 7089	Steel galvanized EN ISO 4042; hot dipped galvanized EN ISO 10684		
Nut EN ISO 4032	Strength class 8 EN ISO 898-2 Steel galvanized \geq 5µm EN ISO 4042 Hot dipped galvanized \geq 45µm EN ISO 10684		
Threaded rods made of st	tainless steel		
Threaded rod M8 – M12	Strength class A4-70 and A4-80 EN ISO 3506-1;		
Washer ISO 7089	Strength class A4-70 and A4-80 EN ISO 3506-1;		
Nut EN ISO 4032	Strength class A4-70 and A4-80 EN ISO 3506-1;		

Commercial standard threaded rods with:

- material and mechanical properties according to Table 2;

- confirmation of material and mechanical properties by inspection certificate 3.1 according to EN-10204:2004;

- marking of the threaded rod with the embedment depth.

Threaded rod types, dimensions and materia	ıls

Desa-Chem PST / Desa-Chem PFV

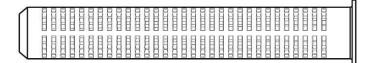
Annex A4

 Table A3: Injection mortar

Product	Composition
Desa-Chem PST / Desa-Chem PFV Two components injection mortar	Additive: quartz Bonding agent: polyester resin
I wo components injection mortai	Hardener: dibenzoyl peroxide

Table A4: Minimum curing time

Temperature in the concrete member	Minimum gelling time in dry concrete (mins)	Minimum load time in dry concrete (mins)
≥ - 5°C	40	180
$\geq +5^{\circ}C$	20	90
$\geq +15^{\circ}C$	9	60
$\geq +25^{\circ}C$	5	30
$\geq +35^{\circ}C$	3	20


Desa-Chem PST / Desa-Chem PFV

Materials and curing time

Annex A5

Plastic sleeve for hollow/perforated masonry: nominal dimensions and material

Resin sleeves are the effective way to create a fixing where there is a hollow void, such as for perforated bricks and blocks, or a more porous material for example blockwork. Resin is injected to fill the volume of the sleeve, and then forced through the fine perforations once the metal fixing rod is inserted. This distributes the resin material into the fixing cavity, forming a solid joint between the resin, the sleeve and the fixing.

Nylon Perforated Sleeve – 16 x 85

Nominal Diameter 16 mm

Nominal Length 85 mm

Desa-Chem PST / Desa-Chem PFV

Annex A6 of European Technical Assessment ETA-17/0016

Plastic sleeve

Use:

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 of Regulation 305/2011 (EU) shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

Anchors subject to:

- Static and quasi-static loads: sizes from M8 to M12.

Base materials:

Solid masonry (use category b) or hollow or perforated masonry (use category c) according to Annex B9. The mortar strength class of the masonry has to be M 2,5 according to EN 998-2:2010 at minimum.

Temperature range:

The anchors may be used in the following temperature range: a) -40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C), b) -40°C to +80°C (max short term temperature + 80 °C and max long term temperature + 50 °C).

Use conditions (Environmental conditions):

Threaded rods:

a) Carbon galvanized steel class 4.6, 5.8 or 6.8 according to EN ISO 898-1 for dry internal conditions.b) Stainless steel A4-70 and A4-80 according to EN ISO 3506 for dry internal conditions.

Nuts and washers:

Corresponding to anchor rod material above mentioned for the different environmental exposures.

Installation:

- Category w/d: installation in wet substrate and use in structures subjected to dry, internal conditions.
- Perforation with drilling machine

Proposed design methods:

- ETAG 029, Annex C, Design method A

Desa-Chem PST / Desa-Chem PFV

Annex B1

of European Technical Assessment ETA-17/0016

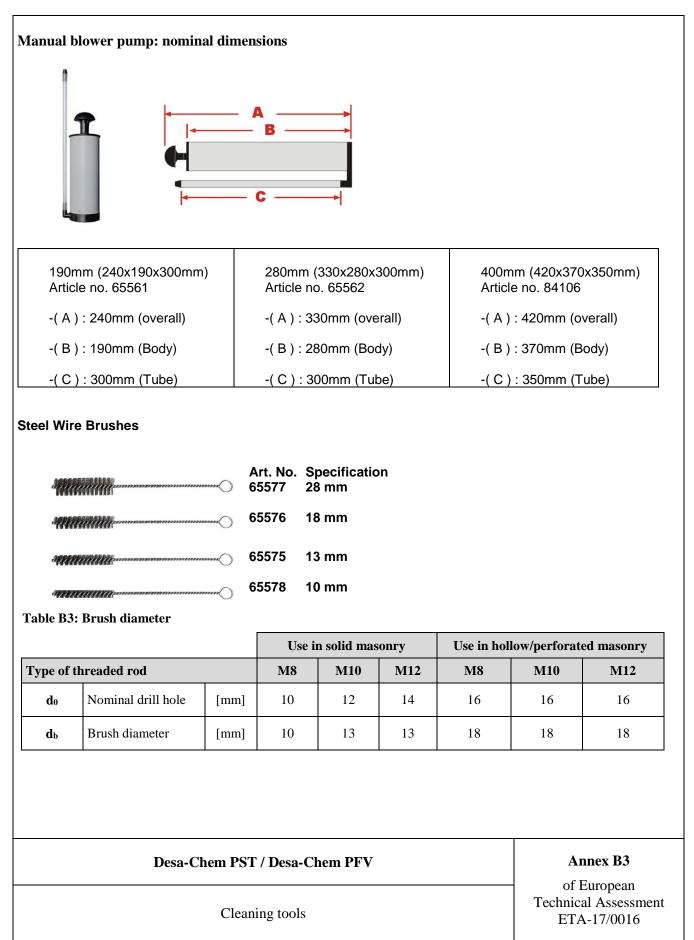
Intended use - Specification

Table B1 Installation data for solid masonry (brick n°1)*						
Size		M8	M10	M12		
Nominal drilling diameter	d ₀ [mm]	10	12	14		
Maximum diameter hole in the fixture	d _{fix} [mm]	9	12	14		
Embedment depth	h _{ef} [mm]	85	85	85		
Depth of the drilling hole	h ₁ [mm]	h _{ef} + 5 mm				
Torque moment	T _{inst} [Nm]	2 2		2		
Thickness to be	t _{fix,min} [mm]		> 0			
fixed	t _{fix,max} [mm]		< 1500			
Minimum spacing	S _{min} [mm]	255	255	255		
Minimum edge distance	C _{min} [mm]	127,5	127,5	127,5		

* Type of bricks are detailed in the Annex B9

Table B2: Installation data for hollow/perforated masonry (brick $n^{\circ} 2$)*

Size		M8	M10	M12
Plastic sleeve			16x85	
Nominal drilling diameter	d ₀ [mm]	16	16	16
Maximum diameter hole in the fixture	d _{fix} [mm]	9 12 14		
Embedment depth	h _{ef} [mm]	85 85 85		
Depth of the drilling hole	h1 [mm]	h _{ef} + 5 mm		
Torque moment	T _{inst} [Nm]	2 2		2
Thickness to be	t _{fix,min} [mm]		> 0	
fixed	t _{fix,max} [mm]	< 1500		
Minimum analian	S _{min,} ∥ [mm]	560	560	560
Minimum spacing	$S_{\min,\perp}[mm]$	200	200	200
Minimum edge distance	C _{min} [mm]	100 100 100		100


* Type of bricks are detailed in the Annex B9

Desa-Chem PST / Desa-Chem PFV

Annex B2

of European Technical Assessment ETA-17/0016

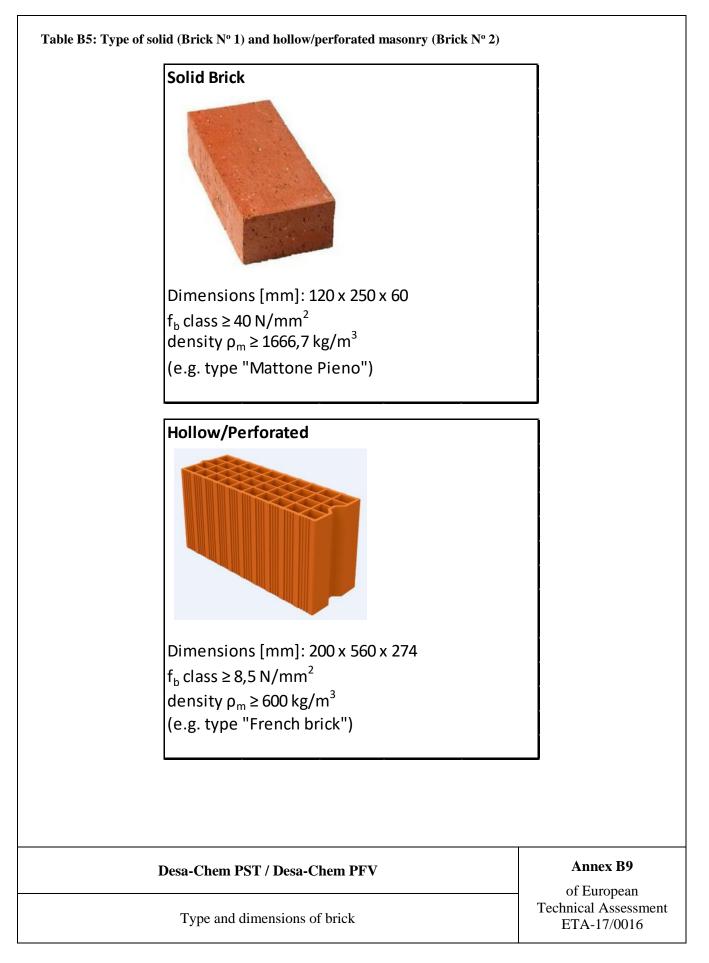
Intended use - data

Resin injection pump details				
Image	Туре			
	Size Cartridge / Code 165 / 300ml Art 65463 - 300 ml 10:1	Manual		
	345ml Art 65472 - 345 ml 10:1	Manual		
	380 / 410ml Art 65464 - 380/410 ml 10:1	Manual		
	165 / 300 / 345 / 380 / 410ml Art 66399 300 ml 7.4v Tool Art 65486 345 ml 7.4v Tool Art 65484 380 ml 7.4v Tool	Battery		
Desa-Chem PS	Annex B4 of European			
Tools	Technical Assessment ETA-17/0016			

Instructions for	use			
Bore hole drilling	g			
		Drill hole to the required embedment depth with a hammer drill set in rotation-hammer mode using an appropriately sized carbide drill bit.		
Bore hole cleanin	ng Just before setti	ng an anchor, the bore hole must be free of dust and debris.		
a) Manual air clea	aning (MAC)			
	X 4	The manual pump may be used for blowing out bore holes Blow out at least 4 times from the back of the bore hole until return air stream is free of noticeable dust.		
← → _0	X 4	Brush 4 times with the specified brush size (brush Ø ≥ bore h steel brush to the back of the hole (if needed with an extensic removing it. The brush must produce natural resistance as it brush is too small and must be replaced with the proper brus	on) in a twisting motion and enters the bore hole. If not, the	
	X 4	Blow out again with manual pump at least 4 times until return air stream is free from noticeable dust.		
b) Compressed air cleaning (CAC)				
6 Bar	X 2	Blow 2 times from the back of the hole (if needed with a nozzle extension) over the hole length with oil-free compressed air (min. 6 bar at 6m ³ /h) until return air stream is free from noticeable dust.		
↔ → _0	X 2	Brush 2 times with the specified brush size (brush $\emptyset \ge$ bore hole \emptyset , see Table) by inserting the steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the bore hole. If not, the brush is too small and must be replaced with the proper brush diameter.		
6 Bar	X 2	Blow out again with compressed air at least 2 times until return air stream is free from noticeable dust.		
	Desa-Chen	n PST / Desa-Chem PFV	Annex B5	
			of European Technical Assessment	

Procedure for solid masonry (1)

Technical Assessment ETA-17/0016


In structions for the						
Instructions for use						
t t	Remove the threaded cap from the cartridge. Cut the bag be	low the clip if appropriate.				
₩ + ∰ 	Tightly attach the mixing nozzle. Do not modify the mixer in element is inside the mixer. Use only the supplied mixer wit	n any way. Made sure the mixing h the adhesive.				
	Insert the cartridge into the dispenser. Press the release trig insert the cartridge neatly into the cradle without any distor	ger to retract the plunger and tion.				
×	Discard the initial trigger pulls 10cm of adhesive. Resin will dispensing is initiated.	flow from the cartridge as soon as				
Instructions for use						
75%	Insert the nozzle to the bottom of the hole and inject the	resin until the hole is filled 75%				
()	Insert the anchor, slowly with a slight twisting motion into the hole. Remove excess resin and leave the fixing until minimum curing (loading) times has elapsed					
Desa-Ch	Annex B6 of European					
Procee	Procedure for solid masonry (2)					

Instructions for u	Instructions for use				
Bore hole drilling	g				
		Drill hole to the required embedment depth with a hammer damode using an appropriately sized carbide drill bit.	rill set in rotation-hammer		
Bore hole cleanin	g Just before setti	ng an anchor, the bore hole must be free of dust and debris.			
a) Manual air clea	aning (MAC)				
	X 4	The manual pump may be used for blowing out bore holes Blow out at least 4 times from the back of the bore hole until r noticeable dust.	eturn air stream is free of		
	X 4	Brush 4 times with the specified brush size (brush $\emptyset \ge$ bore horse brush to the back of the hole (if needed with an extension removing it. The brush must produce natural resistance as it e brush is too small and must be replaced with the proper brush	n) in a twisting motion and enters the bore hole. If not, the		
	X 4	Blow out again with manual pump at least 4 times until return air stream is free from noticeable dust.			
b) Compressed ai	r cleaning (CAC)				
5 Bar	X 2	Blow 2 times from the back of the hole (if needed with a nozzle extension) over the hole length with oil-free compressed air (min. 6 bar at 6m ³ /h) until return air stream is free from noticeable dust.			
	X 2	Brush 2 times with the specified brush size (brush $\emptyset \ge$ bore hole \emptyset , see Table) by inserting the steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the bore hole. If not, the brush is too small and must be replaced with the proper brush diameter.			
6 Bar	*** *** Blow out again with compressed air at least 2 times until return air stream is free from noticeable dust.				
			Annex B7		
	Desa-Cher	n PST / Desa-Chem PFV	of European		
Procedure for hollow/perforated masonry (1) Technical Assessment ETA-17/0016			Technical Assessment		

Instructions for use	
	Remove the threaded cap from the cartridge without cutting.
↓ ↓ ↓	Tightly attach the mixing nozzle. Do not modify the mixer in any way. Made sure the mixing element is inside the mixer. Use only the supplied mixer with the adhesive.
	Insert the cartridge into the dispenser. Press the release trigger to retract the plunger and insert the cartridge neatly into the cradle without any distortion.
×	Discard the initial trigger pulls 10cm of adhesive. Resin will flow from the cartridge as soon as dispensing is initiated.

Desa	a-Chem PST / Desa-Chem PFV	Annex B8 of European
	Insert the anchor, slowly with a slight twisting mot and leave the fixing until minimum curing (loading	tion into the sleeve. Remove excess resin g) times has elapsed
100%	Insert the nozzle to the end of the sleeve and inject Close the cap.	t the resin until the sleeve is 100% filled.
	Introduce the sleeve of suitable dimension (see tab collar is level with the hole face. The cap may be op	ole) to the back of the hole so that the pened to allow full nozzle insertion.
Instructions for use		

Procedure for hollow/perforated masonry (2)

ESSENTIAL CHARA	CTERISTICS	PERFORMANCE				
Installation parameters		M8	M10	M12		
d [mm]		8	10	12		
do [mm] category b (so		10	12	14		
	llow or perforated masonry)	16	16	16		
Type of plastic sleeve f	or use in category c	16x85	16x85	16x85		
l _{fix} [mm]		9	12	14		
h1 [mm]			$h_{ef} + 5 mm$			
t _{fix} [mm]	Min		>0			
	Max		≤ 1500 mm			
Tinst [Nm] category b (s		2	2	2		
T _{inst} [Nm] category c (h masonry)	ollow or perforated	2	2	2		
Smin [mm] category b (s	solid masonry)	255	255	255		
Cmin [mm] category b (solid masonry)	127,5	127,5	127,5		
S _{min} [mm] category c (h	nollow masonry) $S_{min, \parallel}$	560	560	560		
S _{min} [mm] category c (h	nollow) S _{min,} ⊥	200	200	200		
Cmin [mm] category c (l	nollow masonry)	100	100	100		
* Resistance for tensil Temperature range -4	e and shear load 40°C/+40°C (T _{mlp} = 24°C)	M8	M10	M12		
$D_{1} = \frac{1}{2} = \frac{1}{2} $	N _{Rk} [kN]		2,5	•		
Brick n°1 (solid)	V _{Rk} [kN]	6,0				
Brick n°2 (hollow)	N _{Rk} [kN]		0,75			
Drick II 2 (nonow)	V _{Rk} [kN]		3,5			
* Resistance for tensil Temperature range -4		M8	M10	M12		
50°C)	· •					
Brick n°1 (solid)	N _{Rk} [kN]	2,0				
briek in 1 (Bolid)	V _{Rk} [kN]	6,0				
Brick n°2 (hollow)	N _{Rk} [kN]		0,6			
2	V _{Rk} [kN]		3,5			

For design according to ETAG 029 Annex C: $N_{Rk} = N_{Rk,p} = N_{Rk,pb} - steel failure is not decisive$

* For design according to ETAG 029: $V_{Rk} = V_{Rk,b}$ – steel failure without lever arm is not decisive – $V_{Rk,c}$ according to ETAG 029 Annex C section C.5.2.2.5

Desa-Chem PST / Desa-Chem PFV

Performance for static and quasi-static loads: Resistances

Table C2: Characteristic bending moments					
Size			M8	M10	M12
Characteristic resistance with standard threaded rod grade 4.6	M _{Rk,s}	[Nm]	15	30	52
Partial safety factor	γ_{Ms}	[-]		1,67	
Characteristic resistance with standard threaded rod grade 5.8	M _{Rk,s}	[Nm]	19	37	66
Partial safety factor	γms	[-]	1,25		
Characteristic resistance with standard threaded rod grade 6.8	M _{Rk,s}	[Nm]	22	45	79
Partial safety factor	γ_{Ms}	[-]		1,25	
Characteristic resistance with standard threaded rod stainless steel A4-70 (class 70)	M _{Rk,s}	[Nm]	26	52	92
Partial safety factor	γ _{Ms}	[-]	1,56		
Characteristic resistance with standard threaded rod stainless steel A4-80 (class 80)	M _{Rk,s}	[Nm]	30	60	105
Partial safety factor	γ_{Ms}	[-]		1,33	

Desa-Chem PST / Desa-Chem PFV

Performance for static and quasi-static loads: Resistances

ESSENTIAL CHARACTERISTI	CS	PERFORMANCE			
* Resistance for tensile and shear load Temperature range $-40^{\circ}C/+40^{\circ}C$ (T _{mlp} = 24°C) and $-40^{\circ}C$ to $+80^{\circ}C$ (T _{mlp} = 50°C)		M8	M10	M12	
$\gamma_{\rm Mm}$ [-] Category w/d			2,50		
Brick n°1	nm]	255	255	255	
C _{cr,N} [1	-	127,5	127,5	127,5	
S _{cr,N,}		560	560	560	
Brick n°2 $S_{cr,N} \perp [mm]$		200	200	200	
C _{cr,N} [1		100	100	100	
β coefficient for in situ test (ETAC Temperature range: -40°C/+40°C		M8	M10	M12	
Brick Nº 1 - Solid brick	β[-]		0,57	1	
Brick Nº 2 - French Brick	β[-]		0,60		
β coefficient for in situ test (ETAC	G 029 Annex B)	M8	M10	M12	
Temperature range: -40°C/+80°C		IVIO		10112	
Brick Nº 1 - Solid brick	β[-]		0,45		
Brick Nº 2 - French Brick	β[-]		0,47		
Displacement under service load Tensile load Temperature range -40°C/+40°C	$(T_{mlp} = 24^{\circ}C)$				
Brick n°1 – Solid brick		M8	M10	M12	
Admissible service load in tensile	F [kN]		0,71		
Displacement	δ _{N0} [mm]	0,02			
Displacement	$\delta_{N\infty}$ [mm]		0,05		
Brick n°2 – Hollow/perforated br	ick	M8 With sleeve	M10 With sleeve	M12 With sleeve	
Admissible service load in tensile	F [kN]		0,21		
	δ_{N0} [mm]	0,03			
Displacement	$\delta_{N\infty}$ [mm]		0,05		
Displacement under service load Tensile load Temperature range -40°C to +80°		L	.,		
Brick n°1 – Solid brick		M8	M10	M12	
Admissible service load in tensile	F [kN]		0,57		
	δ _{N0} [mm]		0,03		
Displacement	$\delta_{N\infty}$ [mm]	0.06			
Drich nº? Hallender (* 11		M8	M10	M12	
Brick n°2 – Hollow/perforated br		With sleeve	With sleeve	With sleeve	
Admissible service load in tensile	F [kN]		0,17		
Displacement	$\frac{\delta_{N0} [mm]}{\delta_{N\infty} [mm]}$	0,03 0,07			
Dece	Chem PST / Desa-	Chem PFV		Annex C3	

Performance for static and quasi-static loads: Resistances

ESSENTIAL CHARACTERISTICS		PERFORMANCE	PERFORMANCE			
Displacement under service load						
Shear load	(T 34 %C)	1 40°C 4 90°C (T				
<u>Femperature range -40°C/+40°C</u> Brick n°1 – Solid brick	$(\mathbf{T}_{mlp} = 24^{\circ}\mathbf{C})$	$\frac{\text{and -40^{\circ}C to +80^{\circ}C (T_{mlp} = 5)}}{M8}$	0°C) M10	M12		
Admissible service load in shear	F [kN]	1410	1,71	1112		
	δ _{v0} [mm]		0,45			
Displacement	$\delta_{V\infty}[mm]$		0,68			
Brick n°2 – Hollow/perforated bi	ick	M8	M10	M12		
Admissible service load in shear		With sleeve	With sleeve	With sleeve		
Admissible service load in snear	F [kN] δ _{v0} [mm]		<u>1,00</u> 1,15			
Displacement	$\delta_{V\infty}$ [mm]		1,73			
Table C4: Reaction to fire.		1				
ESSENTIAL CHARACTERIST		PERFORMANCE				
Reaction to fire		In the final application the thickness of the mortar layer is about 1 to 2 mm and most of the mortar is material classified class A1 according to EC Decision 96/603/EC. Therefore, it may be assumed that the bonding material (synthetic mortar or a mixture of synthetic mortar and cementitious mortar) in connection with the metal anchor in the end use application do not make any contribution to fire growth or to the fully developed fire and they have no influence to the smoke hazard.				
Table C5: Resistance to fir	e.					
ESSENTIAL CHARACTERIST	ICS	PERFORMANCE				
ESSENTIAL CHARACTERIST	ICS	PERFORMANCE NPD				
	ICS					

Table C6: Terminology and symbols

TERM	MINOLOGY AND SYMBOLS
d	Diameter of anchor bolt or thread diameter
do	Drill hole diameter
d _{fix}	Diameter of clearance hole in the fixture
h _{ef}	Effective anchorage depth
h₁	Depth of the drilling hole
Tinst	Torque moment to installation
t _{fix}	Thickness to be fixed
S_{min}	Minimum allowable spacing
C_{min}	Minimum allowable edge distance
N _{Rk}	Characteristic tensile resistance for single anchor
V_{Rk}	Characteristic shear resistance for single anchor
γMm	Partial safety factors
S _{cr,N}	Spacing for ensuring the transmission of the characteristic tensile resistance of a single anchor without spacing and edge effects
$C_{\text{cr},\text{N}}$	Edge distance for ensuring the transmission of the characteristic tensile resistance of a single anchor without spacing and edge effects
β	Factor according to ETAG 029 Annex B
F	Service load
δ0	Short term displacement under service load
δ_{∞}	Long term displacement under service load
NPD	No performance declared

Desa-Chem PST / Desa-Chem PFV

Terminology and symbols